kinect2Relative
目录
红外图像
,像素值由反射回相机的红外光量确定。深度图像
也叫距离影像,是指将从图像采集器到场景中各点的距离(深度)值作为像素值的图像
。获取方法有:激光雷达深度成像法
、计算机立体视觉成像
、坐标测量机法
、莫尔条纹法
、结构光法
。点云
:当一束激光照射到物体表面时,所反射的激光会携带方位、距离等信息。若将激光束按照某种轨迹进行扫描,便会边扫描边记录到反射的激光点信息,由于扫描极为精细,则能够得到大量的激光点,因而就可形成激光点云。点云格式有*.las ;*.pcd; *.txt等。深度图像经过坐标转换可以计算为点云数据
;有规则及必要信息的点云数据可以反算为深度图像
。TOF
是通过红外光发射器发射调制后的红外光脉冲,不停地打在物体表面,经反射后被接收器接收,通过相位的变化来计算时间差
,进而结合光速计算出物体深度信息。不怎么受环境光干扰,缺点是分辨率暂时都做不高。结构光
是通过红外光发射器发射一束编码后的光斑到物体表面,光斑打在物体表面后,由于物体的形状、深度不同,光斑位置不同,通过光斑的编码信息与成像信息,进而计算出物体深度信息。结构光在室外效果很差,光斑成像容易受环境光干扰
。
- pykinect2使用demo: https://github.com/liudongdong1/pykinect2
彩色空间坐标系统(Color Space)
——ColorSpacePoint(x,y),彩色图像深度空间坐标系统(Depth Space)
——DepthSpacePoint(x,y),红外线图像、深度图像以及BodyIndex图像, x代表列,y代表行,(x,y)就表示深度图上的一个像素坐标。(0,0)对应于图片的左上角,而(511,423)代表着图片的右下角。深度图和红外图都是一个传感器得到的
。深度图上每个像素
对应的彩色值
,你会用到Coordinate mapping类来获得彩色图上对应的像素位置。
以
左上角为原点
,往右是+X,往下是+Y,单位是像素
- 摄像头空间坐标系统(Camera Space)——CameraSpacePoint(x,y,z),以感应器为原点的3维空间坐标系统,单位是米(m),做人体骨架追踪需要用到这个坐标系统。
深度图上每个像素对应的彩色值,你会用到Coordinate mapping类来获得彩色图上对应的像素位置。
- 映射的概念,比如深度图映射到彩色图的意思是对于
深度图上的一个像素,找到彩色图上的一个像素与之对应
.- Depth Map 类似于灰度图像,只是它的
每个像素值是传感器距离物体的实际距离
。通常RGB图像和Depth图像是配准的,因而像素点之间具有一对一的对应关系
。深度图像 = 普通的RGB三通道彩色图像 + Depth Map, 图像深度 是指存储每个像素所用的位数,也用于量度图像的色彩分辨率。
jpg格式属于有损压缩,而png为无损压缩。研究者当然希望传感器精度更高。 同理,在piv,dic等摄影测量的领域,为了保证优化的精度,直接拍摄的rgb图也不会采用jpg格式保存。
cv2.imwrite('./examples/savefig/rgb/image_r_{}.png'.format(str(i).zfill(5)), rgb_map) cv2.imwrite('./examples/savefig/depth/Tbimage_d_{}.png'.format(str(0).zfill(5)), np.asarray(depth_map,np.uint16))
1. Coordination
.1. 图像坐标系
图像坐标系分为像素和物理两个坐标系种类。数字图像的信息以矩阵形式存储,即一副像素的图像数据存储在维矩阵中。
图像像素坐标系以为原点、以像素为基本单位,U、V分别为水平、垂直方向轴
。图像物理坐标系以摄像机光轴与图像平面的交点作为原点
、以米或毫米为基本单位,其X、Y轴分别与U、V轴平行。图2-4展示的是两种坐标系之间的位置关系:
.2. 摄像机坐标系
摄像机坐标系由摄像机的光心及三条、、轴所构成。它的、轴对应平行于图像物理坐标系中的、轴,轴为摄像机的光轴,并与由原点、、轴所组成的平面垂直。
.3. 世界坐标系
考虑到摄像机位置具有不确定性,因此有必要采用世界坐标系来统一摄像机和物体的坐标关系。世界坐标系由原点及、、三条轴组成。世界坐标与摄像机坐标间有着(2-3)所表达的转换关系
.4. 相机参数含义
.5. 单目测距
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# Date: 18-10-29
import numpy as np # 导入numpy库
import cv2 # 导入Opencv库
KNOWN_DISTANCE = 32 # 这个距离自己实际测量一下
KNOWN_WIDTH = 11.69 # A4纸的宽度
KNOWN_HEIGHT = 8.27
IMAGE_PATHS = ["Picture1.jpg", "Picture2.jpg", "Picture3.jpg"] # 将用到的图片放到了一个列表中
# 定义目标函数
def find_marker(image):
gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 将彩色图转化为灰度图
gray_img = cv2.GaussianBlur(gray_img, (5, 5), 0) # 高斯平滑去噪
edged_img = cv2.Canny(gray_img, 35, 125) # Canny算子阈值化
cv2.imshow("降噪效果图", edged_img) # 显示降噪后的图片
# 获取纸张的轮廓数据
img, countours, hierarchy = cv2.findContours(edged_img.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# print(len(countours))
c = max(countours, key=cv2.contourArea) # 获取最大面积对应的点集
rect = cv2.minAreaRect(c) # 最小外接矩形
return rect
# 定义距离函数
def distance_to_camera(knownWidth, focalLength, perWidth):
return (knownWidth * focalLength) / perWidth
# 计算摄像头的焦距(内参)
def calculate_focalDistance(img_path):
first_image = cv2.imread(img_path) # 这里根据准备的第一张图片,计算焦距
# cv2.imshow('first image', first_image)
marker = find_marker(first_image) # 获取矩形的中心点坐标,长度,宽度和旋转角度
focalLength = (marker[1][0] * KNOWN_DISTANCE) / KNOWN_WIDTH # 获取摄像头的焦距
# print(marker[1][0])
print('焦距(focalLength) = ', focalLength) # 打印焦距的值
return focalLength
# 计算摄像头到物体的距离
def calculate_Distance(image_path, focalLength_value):
image = cv2.imread(image_path)
# cv2.imshow("原图", image)
marker = find_marker(image) # 获取矩形的中心点坐标,长度,宽度和旋转角度, marke[1][0]代表宽度
distance_inches = distance_to_camera(KNOWN_WIDTH, focalLength_value, marker[1][0])
box = cv2.boxPoints(marker)
# print("Box = ", box)
box = np.int0(box)
print("Box = ", box)
cv2.drawContours(image, [box], -1, (0, 255, 0), 2) # 绘制物体轮廓
cv2.putText(image, "%.2fcm" % (distance_inches * 2.54), (image.shape[1] - 300, image.shape[0] - 20),
cv2.FONT_HERSHEY_SIMPLEX, 2.0, (0, 255, 0), 3)
cv2.imshow("单目测距", image)
if __name__ == "__main__":
img_path = "Picture1.jpg"
focalLength = calculate_focalDistance(img_path)
for image_path in IMAGE_PATHS:
calculate_Distance(image_path, focalLength)
cv2.waitKey(0)
cv2.destroyAllWindows()
.5. 双目测距
2. pykinect2
- read_stream.py
展示并存储RGB以及深度图片信息,这里存在问题;
depthframesaveformat = np.copy(np.ctypeslib.as_array(depthframeD, shape=(kinect._depth_frame_data_capacity.value,))) pickle.dump(depthframesaveformat, depthfile)
2. pylibfreenect2
import numpy as np
import open3d as o3d
import cv2
import time
import sys
import datetime
# 导入 pylibfreenect2 库
import pylibfreenect2 as freenect2
from pylibfreenect2 import FrameType, Registration, FrameListener
from test_resnetv2 import *
# 定义颜色常量
BLUE = (0, 0, 255)
GREEN = (0, 255, 0)
RED = (255, 0, 0)
WHITE = (255, 255, 255)
BLACK = (0, 0, 0)
def get_hand_3d_coordinates():
# 初始化 Kinect 传感器
fn = freenect2.Freenect2()
num_devices = fn.enumerateDevices()
if num_devices == 0:
print("No device connected!")
sys.exit()
serial = fn.getDeviceSerialNumber(0)
device = fn.openDevice(serial)
types = FrameType.Ir | FrameType.Depth | FrameType.Color
listener = FrameListener()
device.setIrAndDepthFrameListener(listener)
device.setColorFrameListener(listener)
device.startStreams(*types)
# 初始化变量
hand_3d_coordinates = []
# 初始化 Open3D 点云
pcd = o3d.geometry.PointCloud()
# 初始化 Kinect 注册器
registration = Registration(device.getIrCameraParams(), device.getColorCameraParams())
undistorted = Frame(512, 424, 4)
registered = Frame(512, 424, 4)
n = 0
# 循环处理帧数据
while True:
# 获取深度数据
frames = listener.waitForNewFrame()
depth = frames["depth"]
# 获取彩色图像
color = frames["color"]
# 将深度和彩色图像进行注册
undistorted = FrameType.Depth
registered = FrameType.Color
registration.apply(color, depth, undistorted, registered)
depth_pixel = depth.asarray() / 20
over_index = depth_pixel > 72
depth_pixel[over_index] = 0
cv2.imwrite('/home/robot/Desktop/rh_workspace/workcoatdtest/data/input/0.png', depth_pixel)
onepiece_data = test_resnetv2.testSingleImagefile
# 获取相机姿态
pose = registration.getRegistration()
# 将彩色图像转换为 OpenCV 图像
color_data = registered.asarray(np.uint8)
color_data = cv2.cvtColor(color_data, cv2.COLOR_BGR2RGB)
# 获取深度图像的宽度和高度
height, width = depth.height, depth.width
# 创建空白图像
blank_image = np.zeros((height, width, 3), np.uint8)
# 阈值化深度图像
threshold = 2000
ret, thresholded = cv2.threshold(depth.asarray(np.float32), threshold, 255, cv2.THRESH_BINARY)
# 查找轮廓
contours, hierarchy = cv2.findContours(thresholded.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# 找到最大的轮廓
max_contour = None
max_contour_area = 0
for contour in contours:
area = cv2.contourArea(contour)
if area > max_contour_area:
max_contour = contour
max_contour_area = area
# 如果找到了手部轮廓
if max_contour is not None:
# 获取手部轮廓的凸包
hull = cv2.convexHull(max_contour)
# 画出手部轮廓和凸包
cv2.drawContours(color_data, [max_contour], 0, GREEN, 2)
cv2.drawContours(color_data, [hull], 0, BLUE, 2)
# 获取凸包的顶点
hull_points = np.squeeze(hull)
# 将凸包顶点转换为相机坐标系下的 3D 坐标
points = []
for point in hull_points:
x = point[0]
y = point[1]
xyz = registration.getPointXYZ(depth, point[1], point[0])
points.append(xyz)
# 将点云数据转换为 Numpy 数组
points = np.array(points)
# 更新 Open3D 点云
pcd.points = o3d.utility.Vector3dVector(points)
# 显示 Open3D 点云
o3d.visualization.draw_geometries([pcd])
# 将手部 3D 坐标添加到列表中
hand_3d_coordinates = points.tolist()
# 显示彩色图像
cv2.imshow("Color", color_data)
n += 1
# 等待按下 ESC 键退出程序
key = cv2.waitKey(delay=16)
if n > 0:
break
if key == ord('q'):
break
# 释放帧数据
listener.release(frames)
# 停止 Kinect 传感器
device.stop()
device.close()
# 关闭所有窗口
cv2.destroyAllWindows()
# 返回肩部坐标, 手部 3D 坐标列表
return onepiece_data, hand_3d_coordinates
def test_get_hand_3d_coordinates():
# 调用 get_hand_3d_coordinates 函数
onepiece_data, hand_3d_coordinates = get_hand_3d_coordinates()
# 打印手部 3D 坐标
print("Hand 3D Coordinates:")
print(hand_3d_coordinates)
# 打印肩部 3D 坐标
print("Hand 3D Coordinates:")
print(hand_3d_coordinates)
# 如果手部 3D 坐标不为空,则绘制点云
if hand_3d_coordinates:
# 创建 Open3D 点云
pcd = o3d.geometry.PointCloud()
# 将手部 3D 坐标转换为 Numpy 数组
points = np.array(hand_3d_coordinates)
# 更新 Open3D 点云
pcd.points = o3d.utility.Vector3dVector(points)
# 显示 Open3D 点云
o3d.visualization.draw_geometries([pcd])
if __name__ == "__main__":
test_get_hand_3d_coordinates()
3. C++ kinect2
#include <Windows.h>
#include <iostream>
#include <NuiApi.h>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
typedef struct structBGR {
BYTE blue;
BYTE green;
BYTE red;
BYTE player;
} BGR;
bool tracked[NUI_SKELETON_COUNT] = { FALSE };
cv::Point skeletonPoint[NUI_SKELETON_COUNT][NUI_SKELETON_POSITION_COUNT] = { cv::Point(0, 0) };
cv::Point colorPoint[NUI_SKELETON_COUNT][NUI_SKELETON_POSITION_COUNT] = { cv::Point(0, 0) };
void getColorImage(HANDLE & colorStreamHandle, cv::Mat & colorImg);
BGR Depth2RGB(USHORT depthID);
void getDepthImage(HANDLE & depthStreamHandle, cv::Mat & depthImg, cv::Mat & mask);
void drawSkeleton(cv::Mat &img, cv::Point pointSet[], int which_one);
void getSkeletonImage(cv::Mat & skeletonImg, cv::Mat & colorImg);
int main(int argc, char* argv[])
{
cv::Mat colorImg;
colorImg.create(480, 640, CV_8UC3);
cv::Mat depthImg;
depthImg.create(240, 320, CV_8UC3);
cv::Mat skeletonImg;
skeletonImg.create(240, 320, CV_8UC3);
cv::Mat mask;
mask.create(240, 320, CV_8UC3);
HANDLE colorEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
HANDLE depthEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
HANDLE skeletonEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
HANDLE colorStreamHandle = NULL;
HANDLE depthStreamHandle = NULL;
HRESULT hr;
hr = NuiInitialize(NUI_INITIALIZE_FLAG_USES_COLOR | NUI_INITIALIZE_FLAG_USES_DEPTH_AND_PLAYER_INDEX
| NUI_INITIALIZE_FLAG_USES_SKELETON);
if (FAILED(hr))
{
cout << "Nui initialize failed." << endl;
return hr;
}
hr = NuiImageStreamOpen(NUI_IMAGE_TYPE_COLOR, NUI_IMAGE_RESOLUTION_640x480, 0, 2, colorEvent, &colorStreamHandle);
if (FAILED(hr))
{
cout << "Can not open color stream." << endl;
return hr;
}
hr = NuiImageStreamOpen(NUI_IMAGE_TYPE_DEPTH_AND_PLAYER_INDEX, NUI_IMAGE_RESOLUTION_320x240, 0, 2, depthEvent, &depthStreamHandle);
if (FAILED(hr))
{
cout << "Can not open depth stream." << endl;
return hr;
}
hr = NuiSkeletonTrackingEnable(skeletonEvent, 0);
if (FAILED(hr))
{
cout << "Can not enable skeleton tracking." << endl;
return hr;
}
cv::namedWindow("mask", CV_WINDOW_AUTOSIZE);
cv::namedWindow("colorImg", CV_WINDOW_AUTOSIZE);
cv::namedWindow("depthImg", CV_WINDOW_AUTOSIZE);
cv::namedWindow("skeletonImg", CV_WINDOW_AUTOSIZE);
while (1)
{
if (WaitForSingleObject(colorEvent, 0) == 0)
{
getColorImage(colorStreamHandle, colorImg);
}
if (WaitForSingleObject(depthEvent, 0) == 0)
{
getDepthImage(depthStreamHandle, depthImg, mask);
}
if (WaitForSingleObject(skeletonEvent, 0) == 0)
{
getSkeletonImage(skeletonImg, colorImg);
}
cv::imshow("mask", mask);
cv::imshow("colorImg", colorImg);
cv::imshow("depthImg", depthImg);
cv::imshow("skeletonImg", skeletonImg);
if (cv::waitKey(20) == 27)
break;
}
NuiShutdown();
cv::destroyAllWindows();
return 0;
}
void getColorImage(HANDLE & colorStreamHandle, cv::Mat & colorImg)
{
const NUI_IMAGE_FRAME * pImageFrame = NULL;
HRESULT hr = NuiImageStreamGetNextFrame(colorStreamHandle, 0, &pImageFrame);
if (FAILED(hr))
{
cout << "Could not get color image" << endl;
NuiShutdown();
return;
}
INuiFrameTexture * pTexture = pImageFrame->pFrameTexture;
NUI_LOCKED_RECT LockedRect;
pTexture->LockRect(0, &LockedRect, NULL, 0);
if (LockedRect.Pitch != 0)
{
for (int i = 0; i < colorImg.rows; i++)
{
uchar *ptr = colorImg.ptr<uchar>(i); //第i行的指针
//每个字节代表一个颜色信息,直接使用uchar
uchar *pBuffer = (uchar*)(LockedRect.pBits) + i * LockedRect.Pitch;
for (int j = 0;j < colorImg.cols;j++)
{
//内部数据是4个字节,0-1-2是BGR,第4个现在未使用
ptr[3 * j] = pBuffer[4 * j];
ptr[3 * j + 1] = pBuffer[4 * j + 1];
ptr[3 * j + 2] = pBuffer[4 * j + 2];
}
}
}
else
{
cout << "捕获彩色图像出错" << endl;
}
pTexture->UnlockRect(0);
NuiImageStreamReleaseFrame(colorStreamHandle, pImageFrame);
}
// 处理深度数据的每一个像素,如果属于同一个用户的ID,那么像素就标为同种颜色,不同的用户,
// 其ID不一样,颜色的标示也不一样,如果不属于某个用户的像素,那么就采用原来的深度值
BGR Depth2RGB(USHORT depthID)
{
//每像素共16bit的信息,其中最低3位是ID(所捕捉到的人的ID),剩下的13位才是信息
USHORT realDepth = (depthID & 0xfff8) >> 3; //深度信息,高13位
USHORT player = depthID & 0x0007; //提取用户ID信息,低3位
//因为提取的信息是距离信息,为了便于显示,这里归一化为0-255
BYTE depth = (BYTE)(255 * realDepth / 0x1fff);
BGR color_data;
color_data.blue = color_data.green = color_data.red = 0;
color_data.player = player;
//RGB三个通道的值都是相等的话,就是灰度的
//Kinect系统能够处理辨识传感器前多至6个人物的信息,但同一时刻最多只有2个玩家可被追踪(即骨骼跟踪)
switch (player)
{
case 0:
color_data.blue = depth / 2;
color_data.green = depth / 2;
color_data.red = depth / 2;
break;
case 1:
color_data.blue = depth;
break;
case 2:
color_data.green = depth;
break;
case 3:
color_data.red = depth;
break;
case 4:
color_data.blue = depth;
color_data.green = depth;
color_data.red = depth / 4;
break;
case 5:
color_data.blue = depth;
color_data.green = depth / 4;
color_data.red = depth;
break;
case 6:
color_data.blue = depth / 4;
color_data.green = depth;
color_data.red = depth;
break;
}
return color_data;
}
void getDepthImage(HANDLE & depthStreamHandle, cv::Mat & depthImg, cv::Mat & mask)
{
const NUI_IMAGE_FRAME * pImageFrame = NULL;
HRESULT hr = NuiImageStreamGetNextFrame(depthStreamHandle, 0, &pImageFrame);
if (FAILED(hr))
{
cout << "Could not get depth image" << endl;
NuiShutdown();
return;
}
INuiFrameTexture * pTexture = pImageFrame->pFrameTexture;
NUI_LOCKED_RECT LockedRect;
pTexture->LockRect(0, &LockedRect, NULL, 0);
if (LockedRect.Pitch != 0)
{
for (int i = 0;i < depthImg.rows;i++)
{
uchar * ptr = depthImg.ptr<uchar>(i);
uchar * ptr_mask = mask.ptr<uchar>(i);
uchar *pBufferRun = (uchar*)(LockedRect.pBits) + i * LockedRect.Pitch;
USHORT * pBuffer = (USHORT*)pBufferRun;
for (int j = 0;j < depthImg.cols;j++)
{
// ptr[j] = 255 - (uchar)(255 * pBuffer[j] / 0x0fff); //直接将数据归一化处理
// ptr[j] = (uchar)(255 * pBuffer[j] / 0x0fff); //直接将数据归一化处理
BGR rgb = Depth2RGB(pBuffer[j]);
ptr[3 * j] = rgb.blue;
ptr[3 * j + 1] = rgb.green;
ptr[3 * j + 2] = rgb.red;
switch (rgb.player)
{
case 0:
ptr_mask[3 * j] = 0;
ptr_mask[3 * j + 1] = 0;
ptr_mask[3 * j + 2] = 0;
break;
case 1:
ptr_mask[3 * j] = 255;
ptr_mask[3 * j + 1] = 0;
ptr_mask[3 * j + 2] = 0;
break;
case 2:
ptr_mask[3 * j] = 0;
ptr_mask[3 * j + 1] = 255;
ptr_mask[3 * j + 2] = 0;
break;
case 3:
ptr_mask[3 * j] = 0;
ptr_mask[3 * j + 1] = 0;
ptr_mask[3 * j + 2] = 255;
break;
case 4:
ptr_mask[3 * j] = 255;
ptr_mask[3 * j + 1] = 255;
ptr_mask[3 * j + 2] = 0;
break;
case 5:
ptr_mask[3 * j] = 255;
ptr_mask[3 * j + 1] = 0;
ptr_mask[3 * j + 2] = 255;
break;
case 6:
ptr_mask[3 * j] = 0;
ptr_mask[3 * j + 1] = 255;
ptr_mask[3 * j + 2] = 255;
break;
default:
ptr_mask[3 * j] = 0;
ptr_mask[3 * j + 1] = 0;
ptr_mask[3 * j + 2] = 0;
break;
}
}
}
}
else
{
cout << "捕获深度图像出错" << endl;
}
pTexture->UnlockRect(0);
NuiImageStreamReleaseFrame(depthStreamHandle, pImageFrame);
}
void drawSkeleton(cv::Mat &img, cv::Point pointSet[], int which_one)
{
cv::Scalar color;
switch (which_one)
{
case 0:
color = cv::Scalar(255, 0, 0);
break;
case 1:
color = cv::Scalar(0, 255, 0);
break;
case 2:
color = cv::Scalar(0, 0, 255);
break;
case 3:
color = cv::Scalar(255, 255, 0);
break;
case 4:
color = cv::Scalar(255, 0, 255);
break;
case 5:
color = cv::Scalar(0, 255, 255);
break;
}
// 脊柱
if ((pointSet[NUI_SKELETON_POSITION_HEAD].x != 0 || pointSet[NUI_SKELETON_POSITION_HEAD].y != 0) &&
(pointSet[NUI_SKELETON_POSITION_SHOULDER_CENTER].x != 0 || pointSet[NUI_SKELETON_POSITION_SHOULDER_CENTER].y != 0))
cv::line(img, pointSet[NUI_SKELETON_POSITION_HEAD], pointSet[NUI_SKELETON_POSITION_SHOULDER_CENTER], color, 2);
if ((pointSet[NUI_SKELETON_POSITION_SHOULDER_CENTER].x != 0 || pointSet[NUI_SKELETON_POSITION_SHOULDER_CENTER].y != 0) &&
(pointSet[NUI_SKELETON_POSITION_SPINE].x != 0 || pointSet[NUI_SKELETON_POSITION_SPINE].y != 0))
cv::line(img, pointSet[NUI_SKELETON_POSITION_SHOULDER_CENTER], pointSet[NUI_SKELETON_POSITION_SPINE], color, 2);
if ((pointSet[NUI_SKELETON_POSITION_SPINE].x != 0 || pointSet[NUI_SKELETON_POSITION_SPINE].y != 0) &&
(pointSet[NUI_SKELETON_POSITION_HIP_CENTER].x != 0 || pointSet[NUI_SKELETON_POSITION_HIP_CENTER].y != 0))
cv::line(img, pointSet[NUI_SKELETON_POSITION_SPINE], pointSet[NUI_SKELETON_POSITION_HIP_CENTER], color, 2);
// 左上肢
if ((pointSet[NUI_SKELETON_POSITION_SHOULDER_CENTER].x != 0 || pointSet[NUI_SKELETON_POSITION_SHOULDER_CENTER].y != 0) &&
(pointSet[NUI_SKELETON_POSITION_SHOULDER_LEFT].x != 0 || pointSet[NUI_SKELETON_POSITION_SHOULDER_LEFT].y != 0))
cv::line(img, pointSet[NUI_SKELETON_POSITION_SHOULDER_CENTER], pointSet[NUI_SKELETON_POSITION_SHOULDER_LEFT], color, 2);
if ((pointSet[NUI_SKELETON_POSITION_SHOULDER_LEFT].x != 0 || pointSet[NUI_SKELETON_POSITION_SHOULDER_LEFT].y != 0) &&
(pointSet[NUI_SKELETON_POSITION_ELBOW_LEFT].x != 0 || pointSet[NUI_SKELETON_POSITION_ELBOW_LEFT].y != 0))
cv::line(img, pointSet[NUI_SKELETON_POSITION_SHOULDER_LEFT], pointSet[NUI_SKELETON_POSITION_ELBOW_LEFT], color, 2);
if ((pointSet[NUI_SKELETON_POSITION_ELBOW_LEFT].x != 0 || pointSet[NUI_SKELETON_POSITION_ELBOW_LEFT].y != 0) &&
(pointSet[NUI_SKELETON_POSITION_WRIST_LEFT].x != 0 || pointSet[NUI_SKELETON_POSITION_WRIST_LEFT].y != 0))
cv::line(img, pointSet[NUI_SKELETON_POSITION_ELBOW_LEFT], pointSet[NUI_SKELETON_POSITION_WRIST_LEFT], color, 2);
if ((pointSet[NUI_SKELETON_POSITION_WRIST_LEFT].x != 0 || pointSet[NUI_SKELETON_POSITION_WRIST_LEFT].y != 0) &&
(pointSet[NUI_SKELETON_POSITION_HAND_LEFT].x != 0 || pointSet[NUI_SKELETON_POSITION_HAND_LEFT].y != 0))
cv::line(img, pointSet[NUI_SKELETON_POSITION_WRIST_LEFT], pointSet[NUI_SKELETON_POSITION_HAND_LEFT], color, 2);
// 右上肢
if ((pointSet[NUI_SKELETON_POSITION_SHOULDER_CENTER].x != 0 || pointSet[NUI_SKELETON_POSITION_SHOULDER_CENTER].y != 0) &&
(pointSet[NUI_SKELETON_POSITION_SHOULDER_RIGHT].x != 0 || pointSet[NUI_SKELETON_POSITION_SHOULDER_RIGHT].y != 0))
cv::line(img, pointSet[NUI_SKELETON_POSITION_SHOULDER_CENTER], pointSet[NUI_SKELETON_POSITION_SHOULDER_RIGHT], color, 2);
if ((pointSet[NUI_SKELETON_POSITION_SHOULDER_RIGHT].x != 0 || pointSet[NUI_SKELETON_POSITION_SHOULDER_RIGHT].y != 0) &&
(pointSet[NUI_SKELETON_POSITION_ELBOW_RIGHT].x != 0 || pointSet[NUI_SKELETON_POSITION_ELBOW_RIGHT].y != 0))
cv::line(img, pointSet[NUI_SKELETON_POSITION_SHOULDER_RIGHT], pointSet[NUI_SKELETON_POSITION_ELBOW_RIGHT], color, 2);
if ((pointSet[NUI_SKELETON_POSITION_ELBOW_RIGHT].x != 0 || pointSet[NUI_SKELETON_POSITION_ELBOW_RIGHT].y != 0) &&
(pointSet[NUI_SKELETON_POSITION_WRIST_RIGHT].x != 0 || pointSet[NUI_SKELETON_POSITION_WRIST_RIGHT].y != 0))
cv::line(img, pointSet[NUI_SKELETON_POSITION_ELBOW_RIGHT], pointSet[NUI_SKELETON_POSITION_WRIST_RIGHT], color, 2);
if ((pointSet[NUI_SKELETON_POSITION_WRIST_RIGHT].x != 0 || pointSet[NUI_SKELETON_POSITION_WRIST_RIGHT].y != 0) &&
(pointSet[NUI_SKELETON_POSITION_HAND_RIGHT].x != 0 || pointSet[NUI_SKELETON_POSITION_HAND_RIGHT].y != 0))
cv::line(img, pointSet[NUI_SKELETON_POSITION_WRIST_RIGHT], pointSet[NUI_SKELETON_POSITION_HAND_RIGHT], color, 2);
// 左下肢
if ((pointSet[NUI_SKELETON_POSITION_HIP_CENTER].x != 0 || pointSet[NUI_SKELETON_POSITION_HIP_CENTER].y != 0) &&
(pointSet[NUI_SKELETON_POSITION_HIP_LEFT].x != 0 || pointSet[NUI_SKELETON_POSITION_HIP_LEFT].y != 0))
cv::line(img, pointSet[NUI_SKELETON_POSITION_HIP_CENTER], pointSet[NUI_SKELETON_POSITION_HIP_LEFT], color, 2);
if ((pointSet[NUI_SKELETON_POSITION_HIP_LEFT].x != 0 || pointSet[NUI_SKELETON_POSITION_HIP_LEFT].y != 0) &&
(pointSet[NUI_SKELETON_POSITION_KNEE_LEFT].x != 0 || pointSet[NUI_SKELETON_POSITION_KNEE_LEFT].y != 0))
cv::line(img, pointSet[NUI_SKELETON_POSITION_HIP_LEFT], pointSet[NUI_SKELETON_POSITION_KNEE_LEFT], color, 2);
if ((pointSet[NUI_SKELETON_POSITION_KNEE_LEFT].x != 0 || pointSet[NUI_SKELETON_POSITION_KNEE_LEFT].y != 0) &&
(pointSet[NUI_SKELETON_POSITION_ANKLE_LEFT].x != 0 || pointSet[NUI_SKELETON_POSITION_ANKLE_LEFT].y != 0))
cv::line(img, pointSet[NUI_SKELETON_POSITION_KNEE_LEFT], pointSet[NUI_SKELETON_POSITION_ANKLE_LEFT], color, 2);
if ((pointSet[NUI_SKELETON_POSITION_ANKLE_LEFT].x != 0 || pointSet[NUI_SKELETON_POSITION_ANKLE_LEFT].y != 0) &&
(pointSet[NUI_SKELETON_POSITION_FOOT_LEFT].x != 0 || pointSet[NUI_SKELETON_POSITION_FOOT_LEFT].y != 0))
cv::line(img, pointSet[NUI_SKELETON_POSITION_ANKLE_LEFT], pointSet[NUI_SKELETON_POSITION_FOOT_LEFT], color, 2);
// 右下肢
if ((pointSet[NUI_SKELETON_POSITION_HIP_CENTER].x != 0 || pointSet[NUI_SKELETON_POSITION_HIP_CENTER].y != 0) &&
(pointSet[NUI_SKELETON_POSITION_HIP_RIGHT].x != 0 || pointSet[NUI_SKELETON_POSITION_HIP_RIGHT].y != 0))
cv::line(img, pointSet[NUI_SKELETON_POSITION_HIP_CENTER], pointSet[NUI_SKELETON_POSITION_HIP_RIGHT], color, 2);
if ((pointSet[NUI_SKELETON_POSITION_HIP_RIGHT].x != 0 || pointSet[NUI_SKELETON_POSITION_HIP_RIGHT].y != 0) &&
(pointSet[NUI_SKELETON_POSITION_KNEE_RIGHT].x != 0 || pointSet[NUI_SKELETON_POSITION_KNEE_RIGHT].y != 0))
cv::line(img, pointSet[NUI_SKELETON_POSITION_HIP_RIGHT], pointSet[NUI_SKELETON_POSITION_KNEE_RIGHT], color, 2);
if ((pointSet[NUI_SKELETON_POSITION_KNEE_RIGHT].x != 0 || pointSet[NUI_SKELETON_POSITION_KNEE_RIGHT].y != 0) &&
(pointSet[NUI_SKELETON_POSITION_ANKLE_RIGHT].x != 0 || pointSet[NUI_SKELETON_POSITION_ANKLE_RIGHT].y != 0))
cv::line(img, pointSet[NUI_SKELETON_POSITION_KNEE_RIGHT], pointSet[NUI_SKELETON_POSITION_ANKLE_RIGHT], color, 2);
if ((pointSet[NUI_SKELETON_POSITION_ANKLE_RIGHT].x != 0 || pointSet[NUI_SKELETON_POSITION_ANKLE_RIGHT].y != 0) &&
(pointSet[NUI_SKELETON_POSITION_FOOT_RIGHT].x != 0 || pointSet[NUI_SKELETON_POSITION_FOOT_RIGHT].y != 0))
cv::line(img, pointSet[NUI_SKELETON_POSITION_ANKLE_RIGHT], pointSet[NUI_SKELETON_POSITION_FOOT_RIGHT], color, 2);
}
void getSkeletonImage(cv::Mat & skeletonImg, cv::Mat & colorImg)
{
NUI_SKELETON_FRAME skeletonFrame = { 0 }; //骨骼帧的定义
bool foundSkeleton = false;
HRESULT hr = NuiSkeletonGetNextFrame(0, &skeletonFrame);
if (SUCCEEDED(hr))
{
//NUI_SKELETON_COUNT是检测到的骨骼数(即,跟踪到的人数)
for (int i = 0;i < NUI_SKELETON_COUNT;i++)
{
NUI_SKELETON_TRACKING_STATE trackingState = skeletonFrame.SkeletonData[i].eTrackingState;
// Kinect最多检测到6个人,但只能跟踪2个人的骨骼,再检查是否跟踪到了
if (trackingState == NUI_SKELETON_TRACKED)
{
foundSkeleton = true;
}
}
}
if (!foundSkeleton)
{
return;
}
NuiTransformSmooth(&skeletonFrame, NULL);
skeletonImg.setTo(0);
for (int i = 0;i < NUI_SKELETON_COUNT;i++)
{
// 判断是否是一个正确骨骼的条件:骨骼被跟踪到并且肩部中心(颈部位置)必须跟踪到
if (skeletonFrame.SkeletonData[i].eTrackingState == NUI_SKELETON_TRACKED && skeletonFrame.SkeletonData[i].eSkeletonPositionTrackingState[NUI_SKELETON_POSITION_SHOULDER_CENTER] != NUI_SKELETON_POSITION_NOT_TRACKED)
{
float fx, fy;
// 拿到所有跟踪到的关节点的坐标,并转换为我们的深度空间的坐标,因为我们是在深度图像中
// 把这些关节点标记出来的
// NUI_SKELETON_POSITION_COUNT为跟踪到的一个骨骼的关节点的数目,为20
for (int j = 0;j < NUI_SKELETON_POSITION_COUNT;j++)
{
NuiTransformSkeletonToDepthImage(skeletonFrame.SkeletonData[i].SkeletonPositions[j], &fx, &fy);
skeletonPoint[i][j].x = (int)fx;
skeletonPoint[i][j].y = (int)fy;
}
for (int j = 0;j < NUI_SKELETON_POSITION_COUNT;j++)
{
if (skeletonFrame.SkeletonData[i].eSkeletonPositionTrackingState[j] != NUI_SKELETON_POSITION_NOT_TRACKED)
{
cv::circle(skeletonImg, skeletonPoint[i][j], 3, cv::Scalar(0, 255, 255), 1, 8, 0);
tracked[i] = true;
// 在彩色图中也绘制骨骼关键点
LONG color_x, color_y;
NuiImageGetColorPixelCoordinatesFromDepthPixel(NUI_IMAGE_RESOLUTION_640x480, 0,
skeletonPoint[i][j].x, skeletonPoint[i][j].y, 0, &color_x, &color_y);
colorPoint[i][j].x = (int)color_x;
colorPoint[i][j].y = (int)color_y;
cv::circle(colorImg, colorPoint[i][j], 4, cv::Scalar(0, 255, 255), 1, 8, 0);
}
}
drawSkeleton(skeletonImg, skeletonPoint[i], i);
drawSkeleton(colorImg, colorPoint[i], i);
}
}
}
4. Project
- Depth-Mask-RCNN
- PyKinect2-PyQtGraph-PointClouds
- c++识别人体关键点:https://blog.csdn.net/baolinq/article/details/52373574
- c++识别人体关键点:https://blog.csdn.net/hongbin_xu/article/details/80896424
- kinect bodyindex, color, depth绘制: https://blog.csdn.net/hongbin_xu/article/details/80907403