OpenCV Emoji Recognition
目录
1. 表情识别模型
使用OpenVINO模型库中的emotions-recognition-retail-0003人脸表情模型,该模型是基于全卷积神经网络训练完成,使用ResNet中Block结构构建卷积神经网络。数据集使用了AffectNet表情数据集,支持五种表情识别,分别是:(’neutral’, ‘happy’, ‘sad’, ‘surprise’, ‘anger’)。
输入格式:NCHW=1x3x64x64 输出格式:1x5x1x1
import cv2 as cv
import numpy as np
from openvino.inference_engine import IENetwork, IECore
weight_pb = "D:/projects/opencv_tutorial/data/models/face_detector/opencv_face_detector_uint8.pb"
config_text = "D:/projects/opencv_tutorial/data/models/face_detector/opencv_face_detector.pbtxt"
model_xml = "emotions-recognition-retail-0003.xml"
model_bin = "emotions-recognition-retail-0003.bin"
labels = ['neutral', 'happy', 'sad', 'surprise', 'anger']
emotion_labels = ["neutral","anger","disdain","disgust","fear","happy","sad","surprise"]
emotion_net = IENetwork(model=model_xml, weights=model_bin)
ie = IECore()
versions = ie.get_versions("CPU")
input_blob = next(iter(emotion_net.inputs))
n, c, h, w = emotion_net.inputs[input_blob].shape
print(emotion_net.inputs[input_blob].shape)
output_info = emotion_net.outputs[next(iter(emotion_net.outputs.keys()))]
output_info.precision = "FP32"
exec_net = ie.load_network(network=emotion_net, device_name="CPU")
root_dir = "D:/facedb/emotion_dataset/"
def emotion_detect(frame):
net = cv.dnn.readNetFromTensorflow(weight_pb, config=config_text)
h, w, c = frame.shape
blobImage = cv.dnn.blobFromImage(frame, 1.0, (300, 300), (104.0, 177.0, 123.0), False, False)
net.setInput(blobImage)
cvOut = net.forward()
# 绘制检测矩形
for detection in cvOut[0,0,:,:]:
score = float(detection[2])
if score > 0.5:
left = detection[3]*w
top = detection[4]*h
right = detection[5]*w
bottom = detection[6]*h
# roi and detect landmark
y1 = np.int32(top) if np.int32(top) > 0 else 0
y2 = np.int32(bottom) if np.int32(bottom) < h else h-1
x1 = np.int32(left) if np.int32(left) > 0 else 0
x2 = np.int32(right) if np.int32(right) < w else w-1
roi = frame[y1:y2,x1:x2,:]
image = cv.resize(roi, (64, 64))
image = image.transpose((2, 0, 1)) # Change data layout from HWC to CHW
res = exec_net.infer(inputs={input_blob: [image]})
prob_emotion = res['prob_emotion']
probs = np.reshape(prob_emotion, (5))
txt = labels[np.argmax(probs)]
cv.putText(frame, txt, (np.int32(left), np.int32(top)), cv.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 0), 2)
cv.rectangle(frame, (np.int32(left), np.int32(top)),
(np.int32(right), np.int32(bottom)), (0, 0, 255), 2, 8, 0)
if __name__ == "__main__":
capture = cv.VideoCapture("D:/images/video/Boogie_Up.mp4")
while True:
ret, frame = capture.read()
if ret is not True:
break
emotion_detect(frame)
cv.imshow("emotion-detect-demo", frame)
c = cv.waitKey(1)
if c == 27:
break
原文链接:https://mp.weixin.qq.com/s/C5jDkoxztNwv6mTvp3QmLQ
2. UNet 人像分割
人像分割的相关应用非常广,例如基于人像分割可以实现背景的替换做出各种非常酷炫的效果。我们将训练数据扩充到人体分割,那么我们就是对人体做美颜特效处理,同时对背景做其他的特效处理,这样整张画面就会变得更加有趣,更加提高颜值了,这里我们对人体前景做美颜调色处理,对背景做了以下特效:
UNet网络,类型于一个U字母:首先进行Conv(两次)+Pooling下采样;然后Deconv反卷积进行上采样(部分采用resize+线性插值上采样),crop之前的低层feature map,进行融合;然后再次上采样。重复这个过程,直到获得输出388x388x2的feature map,最后经过softmax获得output segment map。
代码地址: https://github.com/milesial/Pytorch-UNet; https://github.com/leijue222/portrait-matting-unet-flask
class DoubleConv(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.double_conv(x)
class Down(nn.Module):
"""Downscaling with maxpool then double conv"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
DoubleConv(in_channels, out_channels)
)
def forward(self, x):
return self.maxpool_conv(x)
class Up(nn.Module):
"""Upscaling then double conv"""
def __init__(self, in_channels, out_channels, bilinear=True):
super().__init__()
# if bilinear, use the normal convolutions to reduce the number of channels
if bilinear:
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
else:
self.up = nn.ConvTranspose2d(in_channels // 2, in_channels // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
# input is CHW
diffY = torch.tensor([x2.size()[2] - x1.size()[2]])
diffX = torch.tensor([x2.size()[3] - x1.size()[3]])
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
diffY // 2, diffY - diffY // 2])
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class OutConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(OutConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
return self.conv(x)
class UNet(nn.Module):
def __init__(self, n_channels, n_classes, bilinear=True):
super(UNet, self).__init__()
self.n_channels = n_channels
self.n_classes = n_classes
self.bilinear = bilinear
self.inc = DoubleConv(n_channels, 64)
self.down1 = Down(64, 128)
self.down2 = Down(128, 256)
self.down3 = Down(256, 512)
self.down4 = Down(512, 512)
self.up1 = Up(1024, 256, bilinear)
self.up2 = Up(512, 128, bilinear)
self.up3 = Up(256, 64, bilinear)
self.up4 = Up(128, 64, bilinear)
self.outc = OutConv(64, n_classes)
def forward(self, x):
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
logits = self.outc(x)
return logits