TorchVision_Models
目录
Torchvision.Models contain different models like: image classification, pixelwise semantic segmentation, object detection, instance segmentation, person keypoint detection and video classification.
1. Classification Models
- AlexNet VGGResNetSqueezeNetDenseNetInception v3GoogLeNetShuffleNet v2MobileNet v2ResNeXtWide ResNetMNASNet
1.1. Random weights
import torchvision.models as models
resnet18 = models.resnet18()
alexnet = models.alexnet()
vgg16 = models.vgg16()
squeezenet = models.squeezenet1_0()
densenet = models.densenet161()
inception = models.inception_v3()
googlenet = models.googlenet()
shufflenet = models.shufflenet_v2_x1_0()
mobilenet = models.mobilenet_v2()
resnext50_32x4d = models.resnext50_32x4d()
wide_resnet50_2 = models.wide_resnet50_2()
mnasnet = models.mnasnet1_0()
1.2. Using pretrained weights
import torchvision.models as models
resnet18 = models.resnet18(pretrained=True)
alexnet = models.alexnet(pretrained=True)
squeezenet = models.squeezenet1_0(pretrained=True)
vgg16 = models.vgg16(pretrained=True)
densenet = models.densenet161(pretrained=True)
inception = models.inception_v3(pretrained=True)
googlenet = models.googlenet(pretrained=True)
shufflenet = models.shufflenet_v2_x1_0(pretrained=True)
mobilenet = models.mobilenet_v2(pretrained=True)
resnext50_32x4d = models.resnext50_32x4d(pretrained=True)
wide_resnet50_2 = models.wide_resnet50_2(pretrained=True)
mnasnet = models.mnasnet1_0(pretrained=True)
2. Semantic Segmentation
3. Object Detection, Instance Segmentation, Person Keypoint Detection
4. Video Classification
- ResNet 3D 18 ; ResNet MC 18; ResNet (2+1)D
5. 后序Todo
- 积累学习使用使用torch提供的模型进行具体的实用教程;
- 如果学习一个,理解完整的工作过程,训练效果以及可能迁移使用的场景;