Typoro Command

​ Typora 是一个 Markdown 文本编辑器,它支持且仅支持 Markdown 语法的文本编辑。在 Typora 官网 上他们将 Typora 描述为 「A truly minimal markdown editor. 」

1. 安装

#1 安装依赖包
 sudo apt-get install libapt-pkg-dev  
#2 安装、更新 
sudo apt-get install apt-transport-https
sudo apt-get update
#3 安装Typora源
wget -qO - https://typora.io/linux/public-key.asc | sudo apt-key add -
sudo add-apt-repository ‘deb https://typora.io/linux ./‘
sudo apt-get update
#4 安装typora 
sudo apt-get install typora

#首行缩进
  春天来了,又到了万物复苏的季节。
#任务列表
- [ ] 一次性水杯
- [x] 西瓜
#各种表情链接: https://www.webfx.com/tools/emoji-cheat-sheet/

2. 图片排版

方法一:嵌入HTML代码 使用img标签

<img src="./xxx.png" width = "300" height = "200" alt="图片名称" align=center />
<img src=' ' style='float:right; width:300px;height:100 px'/>
#或者
<div align="center">
   <img src="图片地址" height="300px" alt="图片说明" >
</div>

方法二:预定义类

#居中对齐,img间不要换行,否则识别不了
<center class="half">
    <img src="图片链接" width="200"/><img src="图片链接" width="200"/><img src="图片链接" width="200"/>
</center>
#左对齐并排
<figure class="third">
    <img src="" width="200"/><img src="" width="200"/><img src="" width="200"/>
</figure>

3. 数学公式

开启行内公式:文件→偏好设置→Markdown,勾选内联公式,重启typora

下划线

~~中划线~~
$\underline{\text{下划线}}$
$\overline{\text{上划线}}$

分数,平方

算式 markdown
$\frac{7x+5}{1+y^2}$,$1/2$ \frac{7x+5}{1+y^2} , 1/2

下标

算式 markdown
$z=z_l$ , $z=z^1$ 下标: z=z_l, 上标 z=z^1

省略号

省略号 markdown
\cdots

开根号

算式 markdown
$\sqrt{2};\sqrt[n]{3}$ \sqrt{2};\sqrt[n]{3}

花括号

算式 markdown
$c(u)=\begin{cases} \sqrt\frac{1}{N},u=0\ \sqrt\frac{2}{N}, u\neq0\end{cases}$ c(u)=\begin{cases} \sqrt\frac{1}{N},u=0\ \sqrt\frac{2}{N}, u\neq0\end{cases} ,花括号
$a \quad b$ a \quad b ,空格

矢量

算式 markdown
$\vec{a} \cdot \vec{b}=0$ \vec{a} \cdot \vec{b}=0

积分

算式 markdown
$\int ^2_3 x^2 {\rm d}x$ \int ^2_3 x^2 {\rm d}x

极限

算式 markdown
$\lim_{n\rightarrow+\infty} n$ \lim_{n\rightarrow+\infty} n

累加

算式 markdown
$\sum \frac{1}{i^2}$ \sum \frac{1}{i^2}

累乘

算式 markdown
$\prod \frac{1}{i^2}$ \prod \frac{1}{i^2}

希腊字母

大写 markdown 小写 markdown
A A α \alpha
B B β \beta
Γ \Gamma γ \gamma
Δ \Delta δ \delta
E E ϵ \epsilon
ε \varepsilon
Z Z ζ \zeta
H H η \eta
Θ \Theta θ \theta
I I ι \iota
K K κ \kappa
Λ \Lambda λ \lambda
M M μ \mu
N N ν \nu
Ξ \Xi ξ \xi
O O ο \omicron
Π \Pi π \pi
P P ρ \rho
Σ \Sigma σ \sigma
大写 markdown 小写 markdown
T T τ \tau
Υ \Upsilon υ \upsilon
Φ \Phi ϕ \phi
φ \varphi
X X χ \chi
Ψ \Psi ψ \psi
Ω \Omega ω \omega

三角函数

三角函数 markdown
sin \sin

对数函数

算式 markdown
ln15 \ln15
log210 \log_2 10
lg7 \lg7

关系运算符

运算符 markdown
± \pm
× \times
÷ \div
\sum
\prod
\neq
\leq
\geq

其它特殊字符

符号 markdown
$\forall$ \forall
$\infty$ \infty
$\emptyset$ \emptyset
$\exists$ \exists
$\nabla$ \nabla
$\bot$ \bot
$\angle$ \angle
$\because$ \because
$\therefore$ \therefore

\emptyset \in \notin \subset \supset \subseteq \supseteq \bigcap \bigcup \bigvee \bigwedge \biguplus \bigsqcup

$\emptyset \in \notin \subset \supset \subseteq \supseteq \bigcap \bigcup \bigvee \bigwedge \biguplus \bigsqcup$

矩阵:

https://lddpicture.oss-cn-beijing.aliyuncs.com/picture/image-20201108164058875.png

https://lddpicture.oss-cn-beijing.aliyuncs.com/picture/image-20201108164558410.png

4. 主体样式之类

5. Latex

\documentclass{article}
\pagestyle{empty}
\setcounter{page}{6}
\setlength\textwidth{266.0pt}
\usepackage{CJK}
\usepackage{amsmath}

\begin{CJK}{GBK}{song}
\begin{document}

\begin{align}
  (a + b)^3  &= (a + b) (a + b)^2        \\
             &= (a + b)(a^2 + 2ab + b^2) \\
             &= a^3 + 3a^2b + 3ab^2 + b^3
\end{align}
\begin{align}
  x^2  + y^2 & = 1                       \\
  x          & = \sqrt{1-y^2}
\end{align}
This example has two column-pairs.
\begin{align}    \text{Compare }
  x^2 + y^2 &= 1               &
  x^3 + y^3 &= 1               \\
  x         &= \sqrt   {1-y^2} &
  x         &= \sqrt[3]{1-y^3}
\end{align}
This example has three column-pairs.
\begin{align}
    x    &= y      & X  &= Y  &
      a  &= b+c               \\
    x'   &= y'     & X' &= Y' &
      a' &= b                 \\
  x + x' &= y + y'            &
  X + X' &= Y + Y' & a'b &= c'b
\end{align}

This example has two column-pairs.
\begin{flalign}  \text{Compare }
  x^2 + y^2 &= 1               &
  x^3 + y^3 &= 1               \\
  x         &= \sqrt   {1-y^2} &
  x         &= \sqrt[3]{1-y^3}
\end{flalign}
This example has three column-pairs.
\begin{flalign}
    x    &= y      & X  &= Y  &
      a  &= b+c               \\
    x'   &= y'     & X' &= Y' &
      a' &= b                 \\
  x + x' &= y + y'            &
  X + X' &= Y + Y' & a'b &= c'b
\end{flalign}

This example has two column-pairs.
\renewcommand\minalignsep{0pt}
\begin{align}    \text{Compare }
  x^2 + y^2 &= 1               &
  x^3 + y^3 &= 1              \\
  x         &= \sqrt   {1-y^2} &
  x         &= \sqrt[3]{1-y^3}
\end{align}
This example has three column-pairs.
\renewcommand\minalignsep{15pt}
\begin{flalign}
    x    &= y      & X  &= Y  &
      a  &= b+c              \\
    x'   &= y'     & X' &= Y' &
      a' &= b                \\
  x + x' &= y + y'            &
  X + X' &= Y + Y' & a'b &= c'b
\end{flalign}

\renewcommand\minalignsep{2em}
\begin{align}
  x      &= y      && \text{by hypothesis} \\
      x' &= y'     && \text{by definition} \\
  x + x' &= y + y' && \text{by Axiom 1}
\end{align}

\begin{equation}
\begin{aligned}
  x^2 + y^2  &= 1               \\
  x          &= \sqrt{1-y^2}    \\
 \text{and also }y &= \sqrt{1-x^2}
\end{aligned}               \qquad
\begin{gathered}
 (a + b)^2 = a^2 + 2ab + b^2    \\
 (a + b) \cdot (a - b) = a^2 - b^2
\end{gathered}      \end{equation}

\begin{equation}
\begin{aligned}[b]
  x^2 + y^2  &= 1               \\
  x          &= \sqrt{1-y^2}    \\
 \text{and also }y &= \sqrt{1-x^2}
\end{aligned}               \qquad
\begin{gathered}[t]
 (a + b)^2 = a^2 + 2ab + b^2    \\
 (a + b) \cdot (a - b) = a^2 - b^2
\end{gathered}
\end{equation}
\newenvironment{rcase}
    {\left.\begin{aligned}}
    {\end{aligned}\right\rbrace}

\begin{equation*}
  \begin{rcase}
    B' &= -\partial\times E          \\
    E' &=  \partial\times B - 4\pi j \,
  \end{rcase}
  \quad \text {Maxwell's equations}
\end{equation*}

\begin{equation} \begin{aligned}
  V_j &= v_j                      &
  X_i &= x_i - q_i x_j            &
      &= u_j + \sum_{i\ne j} q_i \\
  V_i &= v_i - q_i v_j            &
  X_j &= x_j                      &
  U_i &= u_i
\end{aligned} \end{equation}

\begin{align}
  A_1 &= N_0 (\lambda ; \Omega')
         -  \phi ( \lambda ; \Omega')   \\
  A_2 &= \phi (\lambda ; \Omega')
            \phi (\lambda ; \Omega)     \\
\intertext{and finally}
  A_3 &= \mathcal{N} (\lambda ; \omega)
\end{align}
\end{CJK}
\end{document}
0%